做的事情来说,这个根本就不是问题。
作为大规模使用的芯片,不论是逻辑门集成电路还是cpu、dram,都是定型了就不会随便修改,会大量量产的东西,所以这一点在这方面根本就不是问题。
最重要的一点是,高振东清楚的知道,打从cpu和半导体存储器一开始,就没有双极型什么事儿,双极型做集成逻辑门电路是不错,但是用来做cpu和半导体存储器,根本用不上。
或者说,在这方面,从技术和经济角度出发,人们都从来没有青睐过双极型半导体。
intel4004,10mm的pmos。
8008,10mm的pmos。
首个4kbit的dram,8mm的nmos。
首个16kbit的dram,5mm的nmos。
大名鼎鼎的8086/8088,3mm的nmos。
彻底巩固了intel数十年基业的80286,1.5mm的cmos。
至于为什么大家都不约而同的在这个应用方向上选择了mos技术,那就不得不说mos的优点了。
这玩意工艺简单!比双极型简单得多,不是一星半点那种!
抛开复杂的技术原理等等不说,简单总结,以pmos和双扩散外延双极型为例,要达到差不多同样的效果,两者工艺差别非常巨大。
pmos外延次数1次,工艺步数最多45步,高温工艺2步,光刻最多5次。
而双扩散外延双极型的这些数字,分别是4次以上、130步、10步、8次。
工序更少、工艺更简单、良品率更高
对于量产来说,这些特么可都是钱呐!
而且对于现在的高振东来说,工艺步数越少,就意味着成功率越高。
两者用到的基础技术实际上是差不多的,最大的区别是在晶体管的工作原理上,所以在这个阶段的技术难度上,有了高振东当知识的搬运工,更晚、更先进的mos甚至要比双极型要低。
mos技术还有一个非常逆天、非常反直觉的地方。
在同代次内,更改mos电路的设计,对于mos的工艺没有任何影响,mos电路的性能的改变,是通过改变mos场效应管的几何设计来实现的。
双极型在这种情况下是要通过改变诸如扩散源、扩散时间、扩散温度等工艺参数来实现电路性能的改变,但是mos电路就不,它的工艺是不变的。而且这种改变几何设计就能改变性能的特点,带来了mos集成电路的另外一个好处——更便于实现计算机辅助设计,实现半自动或者自动化设计。
除了上面这些好处之外,双极型半导体本身,有一个最大的缺陷注定了它在大规模、超大规模集成电路上走不远。
——它做不小!但是mos可以!
这个情况的
